script.cookbook

From autoplot.org

Jump to: navigation, search

Contents

  1. Scripts with Callbacks
    1. Single-Point Digitizer
    2. Property Change Listener
    3. Custom Renderer
    4. Add Buttons To PngWalkTool
  2. Scripts
    1. Setting the color of each plot symbol
    2. Histograms and Stats

1. Scripts with Callbacks

Some scripts have "callbacks" where Autoplot calls the script to respond to human-operator events or other actions.

1.1. Single-Point Digitizer

We want to digitize X,Y points from a data plot. Perhaps this is a spectrogram with a cutoff, or the top of a peak. We need to make a call-back which will receive the data points from the Das2 library.

# title: Add Point Digitizer
# label: Point Digitizer
# Click events are registered on the tab "digitizer." If the data is a spectrogram,
# report the Z value as well.  Note this will not work with the pitch angle distribution.
# This also provides feedback showing the digitized data and the data points selected in the 
# digitizer tab. 

typ= getParam( 'typ', 'Click', 'Digitizer Type', ['Click','Key'] )

from org.das2.components import DataPointRecorder
from org.virbo.dataset import SemanticOps
from org.das2.dataset import DataSetUpdateListener
from org.das2.graph import SpectrogramRenderer
import java.util.HashMap

if ( len(dom.plotElements)<3 ):
    uri= dom.dataSourceFilters[0].uri
    setLayoutOverplot(3)
    plot(0,uri)

dpr= DataPointRecorder()

addTab( 'digitizer', dpr )

class MyUpdateListener( DataSetUpdateListener ):
   def dataSetUpdated( self, e ):
       ds= dpr.getDataPoints()
       print ds
       if ( ds!=None ):
           plot( 2, ds[:,0], ds[:,1], color=Color.GRAY, symbolSize=8, lineStyle='none' )  
       else:
           plot( 2, "" )
           
dpr.addDataSetUpdateListener( MyUpdateListener() )

class MySelectionListener(DataSetUpdateListener):
  def dataSetUpdated(self,event):
       ds= dpr.getSelectedDataPoints()
       if ( ds!=None ):
           plot( 1, ds[:,0], ds[:,1], color=Color.YELLOW, symbolSize=11, lineStyle='none' )  
       else:
           plot( 1, ""  )  

dpr.addSelectedDataSetUpdateListener( MySelectionListener() )
           
pp= dom.plots[0].controller.dasPlot

from org.das2.event import DataPointSelectorMouseModule
from org.das2.event import CrossHairRenderer

dprr= CrossHairRenderer( pp,None,pp.getXAxis(),pp.getYAxis() )
mm= DataPointSelectorMouseModule( pp, None, dprr, 'digitizer' )

if ( typ=='Key' ):
   mm.setReleaseEvents(False)
   mm.setKeyEvents(True)
   mm.setDragEvents(False)
else:
   mm.setReleaseEvents(True)
   mm.setKeyEvents(False)
   mm.setDragEvents(False)
       
def dataPointSelected(event):
   x= event.getX()
   y= event.getY()
   if ( typ=='Key' ):
       map= java.util.HashMap()
       map['key']= event.getPlane('keyChar')
       dpr.addDataPoint( x, y, map )
   else:
       dpr.addDataPoint( x, y )
   pes= dom.controller.getPlotElementsFor(dom.plots[0])
   if ( len(pes)==0 ): 
       setStatus('no data found for plot')
       return
   ds= pes[0].controller.getDataSet()
   if ( ds==None ):
       setStatus('nothing plotted')
       return 
    
mm.dataPointSelected=dataPointSelected

pp.dasMouseInputAdapter.primaryModule= mm

# make sure the focus is on the 0th plot element.  The 2nd will be the selected points and above that is the digitized.
dom.controller.plotElement= dom.plotElements[0]

import javax.swing.JOptionPane
if ( typ=='Key' ):
   javax.swing.JOptionPane.showMessageDialog( getViewWindow(),'Click on the plot and press a key, and it will be recorded on the digitizer tab')
else:
   javax.swing.JOptionPane.showMessageDialog( getViewWindow(),'Click on the plot, and it will be recorded on the digitizer tab')

dom.plots[0].yaxis.autoRange= False

1.2. Property Change Listener

You can register actions when properties change. For example, suppose you want to run an analysis the the visible time range. You can add a property change listener which takes action each time.

from java.beans import PropertyChangeListener 

class MyPCL( PropertyChangeListener ):
    def propertyChange( self, e ):
        print e

dom.plots[0].xaxis.addPropertyChangeListener(MyPCL())

Note Jython allows you to state this more succinctly:

def axisChange( e ):
    print e

dom.plots[0].yaxis.propertyChange= axisChange

Now let's do something with the property:

def axisChange( e ):
    if ( e.propertyName=='range' ):
        print '%s -> %s' % ( e.oldValue, e.newValue )

dom.plots[0].yaxis.propertyChange= axisChange

1.3. Custom Renderer

Autoplot v2017a_6 makes it easy to add custom renderers, which convert data into pixels, in scripts.


from org.das2.graph import Renderer
from java.awt.geom import GeneralPath

class HistogramRenderer( Renderer ):
   def doAutorange( self, ds ):
       xr= extent( ds )
       yr= extent( ds.property( QDataSet.DEPEND_0 ) )
       bds= join(rescaleRange(xr,-0.1,1.1),rescaleRange(yr,-0.1,1.1))
       return bds

   def render( self, g, xaxis, yaxis, monitor ):
       xzero= xaxis.transform(0,xaxis.getUnits())
       ds= self.getDataSet()
       if ( ds==None ): return
       yds= ds.property(QDataSet.DEPEND_0)
       ddy= float( ( yds[1]-yds[0] ) / 2 )
       cc= self.getColorControl('color',Color.BLUE)
       gp= GeneralPath()
       yd= yaxis.transform(yds[0]-ddy,yaxis.getUnits())
       gp.moveTo( xzero, yd )
       for i in range(ds.length()):
           y= yds.value(i)
           x= ds.value(i)
           xd= xaxis.transform(x,xaxis.getUnits())
           yd= yaxis.transform(y,yaxis.getUnits())
           yd0= yaxis.transform(y-ddy,yaxis.getUnits())
           yd1= yaxis.transform(y+ddy,yaxis.getUnits())
           gp.lineTo( xd, yd0 )
           gp.lineTo( xd, yd1 )
       gp.lineTo( xzero, yd1 )       
       g.setColor( cc )
       g.fill( gp )

# demo code below shows its use.
reset()
ds= append( randomn(5334,10000) , 3+randomn(5335,20000) )
setCanvasSize(724,460)
plot( ds, xpos='3em,70%-3em', ypos='50px,400px', color=Color.BLUE, renderType='scatter', symbolSize=3 )

plot( 1, histogram(ds,50), xpos='70%+2em,100%-2em',  ypos='50px,400px', color=Color.BLUE, 
      ydrawTickLabels=False, renderer= HistogramRenderer() )

1.4. Add Buttons To PngWalkTool

We wanted a faster way to create "QC" (Quality Control) Records, which tag images as okay or problem. Normally this would take several mouse clicks per image, so we wanted a faster way to go through the set. This adds buttons which are short-cuts to the QC buttons.

pngs = getParam('pngDir', 'file:///home/jbf/pngwalk/voyager1/*.png', 'directory to examine')  

from org.autoplot.pngwalk import PngWalkTool 
p= PngWalkTool.start(pngs, getViewWindow())

# may need, depending on if QC has already been started...
if not p.isQualityControlEnabled(): p.startQC()

from javax.swing import JLabel, JPanel, JButton, ImageIcon
from java.awt import FlowLayout
from org.autoplot.pngwalk import PngWalkView,QualityControlRecord

def greenAction(evt): 
    p.setQCStatus( "",QualityControlRecord.Status.OK );
    p.sequence.next()
def greyAction(evt): 
    p.setQCStatus( "",QualityControlRecord.Status.IGNORE );
    p.sequence.next()
def redAction(evt): 
    p.setQCStatus( "",QualityControlRecord.Status.PROBLEM );
    p.sequence.next()

mytl= JPanel()
mytl.setLayout( FlowLayout( FlowLayout.LEFT ) )
mytl.add( JButton( ImageIcon(PngWalkView.getResource("/resources/badge_ok.png")),actionPerformed=greenAction ) )
mytl.add( JButton( ImageIcon(PngWalkView.getResource("/resources/badge_ignore.png")), actionPerformed=greyAction ) )
mytl.add( JButton( ImageIcon(PngWalkView.getResource("/resources/badge_problem.png")), actionPerformed=redAction ) )

p.addActionComponent( mytl, None )

2. Scripts

2.1. Setting the color of each plot symbol

Suppose you have scatter data which you want to encode with colors. There are a couple of ways you can do this. The simplest is when there are just a couple of colors, and you can have two calls with an overplot.

reset()  # reset to one empty plot
y= accum( randomn( 5334,10000 ) )  # 5334 is a random seed
t= linspace('2000-01-01T00:00','2000-01-02T00:00',10000)
r= where( y.ge(0.) )
plot( 0, t[r], y[r], color='red' )
r= where( y.lt(0.) )
plot( addPlotElement(0), t[r], y[r], color='blue' )
Sometimes you want to color-code by another dataset, using a colorbar to transform from Z value to color. The "color scatter" mode does this:
reset()  # reset to one empty plot
x= randomn( 5334, 10000 )
y= randomn( 5335, 10000 )  
z= sqrt( x**2 + y**2 ) 
plot( x, y, z )
Last, you can use a kludge, where if the z data has units Units.rgbColor then the Z value specifies the color directly.
reset()  # reset to one empty plot
x= randomn( 5334, 10000 )
y= randomn( 5335, 10000 )  
red= floor( lesserOf( abs( x ) / 4 * 256, 255 ) )
blue= floor( lesserOf( abs( y ) / 4 * 256, 255 ) )
rgb= rgbColorDataset( red, dataset(0), blue )
plot( x, y, rgb, symbolSize=10 )
dom.plots[0].zaxis.visible= False  # the Z axis needs to be disabled manually.

2.2. Histograms and Stats

There are a number of routines which perform statistics and other reduction on data. For example, the histogram does a histogram of the data:

ds= randn(200000)
h= histogram(ds,40)
plot(h)

You can more precisely specify the bins with:

ds= randn(200000)
h= histogram(ds,'-10','10','0.1')
plot(h)

These are in quotes because you might have datums like "-10cc" or "2017-001".

Personal tools